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Abstract 
A key aspect of science-based predictive modeling is to assess the credibility of 

predictions. To gain confidence in predictions, one should demonstrate consistency between 
physical observations, expert judgments, and the predictions of equally credible models. This 
suggests a re1 at i on s h i p between f i del it y-t o-da ta , robust ness-to-u n ce rtai n t y, and confidence i n 
prediction. The purpose of this work is to explore the interaction between these three aspects of 
predictive modeling. The concepts of fidelity, robustness, and confidence are first defined in a 
broad sense. A Theorem is then proven that establishes that these three objectives are 
antagonistic. This means that high-fidelity models cannot, at the same time, be made robust to 
uncertainty and lack-of-knowledge. Similarly, equally robust models cannot provide consistent 
predictions, hence reducing confidence. The conclusion of this theoretical investigation is that, 
in assessing the predictive accuracy of numerical models, one should never focus on a single 
aspect only. Instead, the trade-offs between fidelity-to-data, robustness-to-uncertainty, and 
confidence in prediction should be explored. 

Approved for unlimited release on February m, 2004. LA-UR-04-XXXX. Unclassified. 
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4.4 

Purpose 
Explore the relationship between three aspects of 
science-based predictive modeling I 

Fidel ity-to-data 

P 

Prediction-looseness Ro bustness-to- 
(Confidence) uncertainty 

Our thesis is that prediction credibi/ity cannot be 
achieved without first understanding the trade-offs 
between fidelity, robustness, and confidence. 
L A 
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The Relationship Between Experiments 
and Simulations is Changing ... 

0 Old paradigm: 

Experiments are qualification tests, proof that 
something does or does not " break". 
Simulations are used to understand what 
happened, generally, after the fact. 

New paradigm: 

Experiments explore the mechanics and 
validate predictions. Simulations are used to 
predict, with quantifiable confidence , across 
the operational space. 

.)Key: Demonstrate the credibility of predi <RnSm 
- -  LosAlamos 
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M&S Examples 
Predictability can be achieved if the right physics, 
loading, and initial conditions are included in the 
computational model. 

1 L."320 I ,'1 

-~ 

Simulation of a Potential Leak 
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Information Integration 
Modeling & Simulation (M&S) is not sufficient to 
achieve credible predictability. Information from 
other sources must be integrated. 

First-physics Principles Test & Experimental Observables 

I--- 

Modeling & Simulation 

1 

Expert Judgment 

Historical Experience 

Goal: Combine all we know and 
determine how we/ we know it. .) 

Knowledge & 
Intuition 

1 
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Engineering Application 
The engineering application is the propagation of 
an impact through an assembly of metallic and 
crushable (foam pad) components. 

output 

ld-,TiQhtening Bolt 
Accel era t i 2-1 

Signal 

Input 
Accel e rat i 

Signal 

4 4 4 4 4 4 4  
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The Design Space 
Predictions are required for various combinations 
of foam pad thickness and impact load magnitude. 

Features of the Response 
configuration 2. R@eab 8 
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Sources of Evidence 
Evidence about the value of the peak acceleration 
(PAC) feature come from several sources. 

2t  - 
+ Case 2: SDOF, bi4har matwid m0d.l 
8 Case3:SDOFadAbaqw,nomindmodd+ -+ case 4: Abaqw, varying bok preload 
C Case 5: Foam testing expert mnc 
9 case 6 ~ u n e n t s  from impad tests 

0 0.5 1 1.5 2 2.5 3 

Value of PAC Feature (x g) 

3.5 4 

Test measurements 

Expert judgment 

Simulations from h ig h-fideli ty 
finite element models 

Simulations from low-fidelity 
finite element models 

Simulations from SDOF models 

Simulations from SDOF models 

WE \ P O I 6  R E S P O I S E  (ESA-WR) UNCLASSIFIED N A T I O N A L  L A B O R A T O R Y  



U ~ C I A S S I F I E D  LA-UR-04-XXXX - Page 10 

Material Uncertainty 
The main modeling uncertainty is the constitutive 
material of the foam pad (strain-stress curve). 

500 

400 

f "  

t 
- 
$ 2 0 0  

100 

m m m m m . . .  

wdi( t )+ cX( t )+ kx( t )t Fnl( t ) = wdii (t) 
0.6 

0 

-100 
0. I 0 0. I 0.2 0.3 0.4 0.5 

Strain ( In)  

Other sources of uncertainty include the values of 
the (m;c;k) parameters, the initial condition, and 
9e shape and magnitude of the input acceler tion. A LosAlamos 
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Convex Models of Uncertainty 
The uncertainty is represented by defining a family 
of nested, convex domains U(a;qJ that “envelope” 
the data for a given horizon-of-unce 

A 

-io0 
4 1  

Straln (1M Diopl ement (ipch) 

At any horizon-ot-uncertainty, strain-slrain curves 
can be “realized” from a domain U(a;qJ, and used 

define the non-linear forcing function F ’ m  
LosAlamos 
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Ty p i ca I D iff i cu It ies 
Experimental data sets are sparse and uncertain. 
Expert judgment is often ambiguous. Models have 
distributions on their outputs. 

Jodeling assumptions provide a false sense of 
confidence by “hiding” the lack-of-knowledge. 

More often than not, no evidence is available to 
suggest that these sources of uncertainty follow 
conventional probability distributions. 

Similarly, no evidence is often available to suggest 
degrees of belief, membership functions, basic 
probability assignments, or possibility structures. 

L 7 
0 
Los Alamos 
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Path Forward 
To demonstrate credibility (or provide confidence), 
the sources of uncertainty and their influence on 
the predictions must be assessed. 

This work does not advocate alternate approaches 
to probability theory to represent the uncertainty. 

0 Nevertheless, each source of uncertainty should 
be represented using the most appropriate theory. 
(The difficulty becomes information integration.) 

The two important questions are: 

I) What is the total uncertainty? 

I) Are decisions robust to the uncertainty7 
A 

Los Alamos 
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Def i n it ions 
Fidelify=fo-dafa (R): Degree of correlation between 

test data and simulation predictions. 

0 

I k=l ... NTeSt I 
Robus fness-to-uncerfain fy (a*) : Maxi m u m val ue 

of the horizon-of-uncertainty for which all models 
of the corresponding family U(a;qJ meet a given 
fidel i ty req u i remen t R,,,. 

a* = max{R 5 R R / ~ ~ ~ ,  for all ME U(a;q,)} 
a20 

0 Prediction-looseness (A,,): Range of predictions 
expected from a family of equally-credible models. 
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Two Important Remarks ... 
The importance of “prediction-looseness” stems 
from the fact that, to predict with confidence, there 
should be little difference (or small looseness A,) 
between predictions of equally-credi ble models. 

Assessing the confidence in prediction here refers 
to an assessment of prediction error away from 
settings where physical experiments have been 
performed. 

UNCLASSIFIED 
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Theorem 
Theorem: Let U(a;qJ be an info-gap family of 
models that obeys the axioms of nesting and 
translation. Let a* be its robustness function. 
Consider two initial settings of model parameters, 
q 0 and q 0 ’. If a*(qJ 2a(q 0 7, then 1dqJ 21dq 0 7. 

2 0 ,  31, 2 0 ,  ah ,  2 0  
a a* 

a R  a a* 
Theorem : 

Fidelity-to-data R and robustness-to-uncertainty a* 
are anfagonisfic. 

Robustness-to-uncertainty a* and looseness 1, (or 
confide n ce-i n -pred i ct io n) are anfagonisfic. 

-4 A - ,- J-7 
Appncanun E n a l & T  v LosAlamos 
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Trade-offs Established by the I neorem 
Robustness decreases as fidelity improves. 

Numerical simulations calibrated to better reproduce the 
available test data become more vulnerable to errors in 
modeling assumptions, errors in the functional form of 
the model, and uncertainty and variability in the model 
parameters. 

0 

0 

Looseness increases as robustness improves. 
Numerical simulations that are made more immune to 
uncertainty and modeling errors provide a wider, hence 
less consistent, range of predictions. 

Looseness decreases as fidelity improves. 
Numerical simulations made to better reproduce the 
available test data provide more consistent predictions. 

sense of 

LosAlamos 
A 
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Results - 1 
i L  

Ranges of TOA and PAC predictions for increasing 
a-levels of uncertainty. 

8 Test2 
-4- Test3 

1 I I I I I 
0.05 0.1 0.15 0.2 0.25 0.3 

Range of TOA Predictions (milli-second) 
0 

Range of PAC Predictions (9) 
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Results - 2 
--m 

Robustness and opportunity of prediction errors 
for increasing a-levels of uncertainty. 

Relative TOA Error (%) Relative PAC Error (X) 

A 
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Results - 3 
TOA forecasting errors for several a-levels. 
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m.  

Results - 4 
PAC forecasting errors for several a-levels. 
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Results - 5 
TOA looseness (range) for several a-levels. 
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"i 
f =. 

PAC looseness (range) for several a-levels. 
PAC r-gloornr I -LA. . * ,  PAC kuhs L o o r n r i - M . . a a  PAC rmRdq L.rrrr I M .= as 

". 
I 3 :; 

f z: 
1-J 

Results - 6 

a#. 
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Results - 7 
Confidence-in-predictions (derived from TOA and 
PAC “looseness” using the total uncertainty, TU). 

Confidence-in-predictions vs. a-level of Uncertaity 
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Results - 8 r 
Confidence-in-prediction for several a-levels. 
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Conclusion 
Prediction credibility cannot be achieved 
without understanding the trade-offs between 
fidelity, robustness, and confidence. 

Calibrating numerical simulations for maximum 
fidelity-to-data is not a sound decision-making 
strategy. 

Fidelity-to-data does nof imply model validation. 
In fact, optimized models have zero robustness 
to uncertainty. 

Instead of being optimized, fidelity-to-data 
should be made “good enough.” Robustness- 
to-uncertainty and / or confidence-in-prediction 
should be optimized, but remember that the two 

f l  
Los Alamos 

1 are antagonistic. 7 
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